Human-Machine System to Enhance Software Analyst Performance

HRL Laboratories has begun development of a system that will assist program analysts as they search for vulnerabilities in compiled software. The Cognitive Aid for Vulnerability Analysis project has a multi-tiered approach to accelerate reverse-engineering and software comprehension by addressing the gap in human-machine systems that limits their recognition and adaptation to human thought processes, such as attention decay and fatigue, that reduce performance during detection of accidental or malicious vulnerabilities in compiled binaries.

HRL Laboratories Ramps Up High-Speed Gallium Nitride Semiconductor Foundry

HRL Laboratories, LLC, has scheduled quarterly multi-project wafer (MPW) runs in calendar years 2021 and 2022 for its T3 gallium nitride (GaN) monolithic microwave integrated circuit (MMIC) technology. HRL’s T3 GaN is a leading-edge millimeter-wave (mmW), high-electron-mobility transistor technology for next-generation, high-data-rate wireless communications, high-resolution radar imaging, and many other defense and civilian applications.

Complex Analytics of Network of Networks – CANON

A new software system developed by HRL Laboratories will enable open-source intelligence analysts to track down adversarial activity through complex networks of networks worldwide.

New Research Advances the Art of 3D-Printed Metal

HRL Laboratories, LLC, continues its research push to advance the state of the art in additive manufacturing (AM) of high performance alloys. The HRL AM team’s new paper elucidates the fundamental physics behind HRL’s expertise, which enables significantly improved control of how 3D-printed metals melt and solidify. The paper, Grain refinement mechanisms in additively manufactured nano-functionalized aluminum, was published online in September 2020 ahead of the November print issue of the journal Acta Materialia.

HRL Laboratories Sets Sights on Next-Generation Defense Electronics With Advanced Semiconductor Material

HRL Laboratories scientists are aiming for a disruptive improvement in radar, electronic warfare, and communications capabilities they hope will be enabled by their new project. If they are successful, the W-band, nitrogen-polar gallium nitride low-noise amplifier could be the world’s first such device, launching a new generation of defense-oriented electronics applications with a possible improvement of 4 times the output power in W bands over HRL’s existing technology.

HRL Advances to Next Phase in DARPA DREaM Project for Ultra-linear High-speed GaN Transistors

At HRL Laboratories, LLC, a team led by Principal Investigator Dr. Jeong-Sun Moon is developing the next generation of gallium nitride (GaN) transistors that will have a dramatic effect on electronic components that amplify electromagnetic signals for communications, radar, and 5G wireless networks. The MMIC amplifiers that utilize these high-speed GaN transistors can see greatly improved linearity, noise reduction, and reduced power consumption.

STELLAR Program Aims for Autonomous Vehicles With Permanent Memories

HRL Laboratories has reached the second phase of its novel system aimed to give autonomous systems such as self-driving cars artificial intelligence the ability to learn new tasks and preserve experience without losing or displacing previous learning—features not possible with current AI systems.

Novel Process Creates 3D-Printed Ceramic Matrix Composites

HRL Laboratories, LLC, reports a novel method used to additively manufacture—3D-print—components made from fracture-resistant ceramic matrix composites (CMCs). Published May 28, 2020 in The Journal of the American Ceramic Society, this technique makes possible a new range of complex designs with these durable materials.