Novel Process Creates 3D-Printed Ceramic Matrix Composites

HRL Laboratories reports a novel method to 3D-print components from fracture-resistant ceramic matrix composites. © 2020 HRL Laboratories.

HRL Laboratories Achieves Material and Process Sweet Spot for the Free-Form Fabrication of Tough Ceramic Parts

HRL Laboratories, LLC, reports a novel method used to additively manufacture—3D-print—components made from fracture-resistant ceramic matrix composites (CMCs).  Featured on the cover of the December 2020 issue of The Journal of the American Ceramic Society, this technique makes possible a new range of complex designs with these durable materials.

Ceramic parts resist corrosion and wear, and have excellent high-temperature capabilities that make them desirable for application in propulsion and energy generation systems as well as chemical processing equipment and medical implants. However, their use has been limited by the difficulties of shaping ceramic materials, a problem solved by 3D printing. With properties commensurate with traditionally processed technical ceramics, HRL’s technique allows free-form fabrication of high-performance CMC components.

HRL achieved the “sweet spot,” determining the processing bounds for the most durable CMCs. © 2020 HRL Laboratories.

“All ceramic parts, whether traditionally processed or 3D printed, have small defects, such as tiny voids, that arise during processing, handling, and service,” said HRL researcher Mark O’Masta, first author on the current paper. “The problem is when stress is applied to that region, the defect can become an uncontrolled crack that results in catastrophic failure of the entire part. It basically crumbles. Adding a ceramic reinforcement to a ceramic matrix is a common method to create defect-tolerant parts. The challenge we addressed in this project was integrating this toughening solution with our 3D-printing process. We can now add these reinforcements in large volume fractions to significantly toughen our 3D-printed ceramic parts. We’ve essentially made a brittle monolithic material into a durable composite. As an extra benefit, adding reinforcements relaxed some of the processing constraints.”

A ceramic fabrication technique must result in as low a void fraction as possible to not compromise the final component. If too high a fraction of the reinforcement element is added, the elements will impinge upon surpassing their packing limit and the part is subsequently weakened by the process. Through careful measurements and characterization, HRL achieved the “sweet spot,” determining the processing bounds for the most durable CMCs.

Continuing from their 3D-printed ceramic technique published in Science in 2016, the HRL team utilized UV curable preceramic polymers. A digital light projection printer cures the polymer, printing parts in a rapid layer-by-layer method. In the current experiments, a siloxane-based preceramic resin was reinforced with inert particles. The printed polymer parts were then converted to silicon oxycarbide (SiOC), a glassy ceramic, through an extreme heating process called pyrolysis.

Continuing from their 3D-printed ceramic technique published in Science in 2016, the HRL team utilized UV curable preceramic polymers. © 2020 HRL Laboratories.

“Finding the ideal process to include these reinforcement elements was quite challenging and eluded us for some time,” said Ekaterina “Katya” Stonkevitch, HRL engineer and second author. “Through a detailed study and careful inspection for defects using light and electron microscopy, we were able to identify the right processing conditions. With that information we printed additional parts to do mechanical testing on, and that’s when we figured out our fracture toughness and mechanical strength. We also discovered that with the reinforced material we could print parts thicker than before.”

The paper’s citation is: O’Masta, MR, Stonkevitch, E, Porter, KA, Bui, PP, Eckel, ZC, Schaedler, TA. Additive manufacturing of polymer‐derived ceramic matrix composites. J Am Ceram Soc. 2020; 00: 1– 12. https://doi.org/10.1111/jace.17275.

MS20136 | PR20-026 Tags: , , , , , , , ,

HRL Laboratories, LLC, Malibu, California (hrl.com) is a corporate research-and-development laboratory owned by The Boeing Company and General Motors specializing in research into sensors and materials, information and systems sciences, applied electromagnetics, and microelectronics. HRL provides custom research and development and performs additional R&D contract services for its LLC member companies, the U.S. government, and other commercial companies.

Media Inquiries: media[at]hrl.com, (310) 317-5000