Displaying news tagged: radar

HRL Laboratories Sets Sights on Next-Generation Defense Electronics With Advanced Semiconductor Material

HRL Laboratories scientists are aiming for a disruptive improvement in radar, electronic warfare, and communications capabilities they hope will be enabled by their new project. If they are successful, the W-band, nitrogen-polar gallium nitride low-noise amplifier could be the world’s first such device, launching a new generation of defense-oriented electronics applications with a possible improvement of 4 times the output power in W bands over HRL’s existing technology.

Radar that Learns to Identify Objects

Scientists at HRL Laboratories have published their new framework for training computer deep neural networks to be able to classify synthetic aperture radar (SAR) images without a large labeled data set, solving the problem of SAR image identification when only a few labeled data were available.

Highest Speed GaN Electronics Racing to the Finish Line

HRL Laboratories has received a DARPA award to significantly advance the technology and manufacturing readiness levels of its leading-edge T3 GaN technology. Integrated circuits made by layering GaN onto silicon carbide substrate wafers offer the best combination of efficiency, output power, and survivability among radio frequency and millimeter-wave semiconductor technologies.

Detecting Danger At A Safe Distance

HRL Laboratories, LLC, has developed a miniaturized, low-power radar array that potentially can see weapons or explosives concealed on a person at tactically safe distances.

DARPA Awards HRL Contract for Advanced Scanning Technology for Imaging Radars (ASTIR)

The Defense Advanced Research Project Agency (DARPA) announced an award to HRL Laboratories, LLC for the ASTIR program. The goal of ASTIR is to demonstrate a fundamentally new imaging radar architecture through basic research on “…innovative imaging radar architectures that can provide high frame-rate, three dimensional imaging of objects through adverse obscurants (fog, smoke, heavy rain, etc.) without requiring target or platform motion.”