HRL Laboratories have successfully demonstrated their NEMESIS program (NEurMorphic EyeS In the Sky), a revolutionary drone-based system to analyze situational awareness and provide actionable intelligence in real time. NEMESIS is a bioinspired system of fast, accurate video processing that emulates human vision. With NEMESIS, small drones can extract, recognize and track human movement, behaviors, and overall scenes from multi-modal sensor data, providing high-quality tactical decisions and actionable intelligence to warfighters as action is happening.
HRL Laboratories, LLC, electrical engineers have published an advancement on their diamond fin field-effect transistor (FinFET), a device that promises to enable future electronics that operate in high-temperature environments beyond the limits of current technology.
HRL Laboratories will design architected materials to be used on the leading edges of hypersonic aircraft as part of the Materials Architectures and Characterization for Hypersonics or MACH program from DARPA. Hypersonic vehicles fly at least five times the speed of sound. Leading edges are essential design features because they enable long-range travel at extremely high velocities while maintaining vehicle maneuverability.
HRL Laboratories Complex Analytics of Network of Networks (CANON) system has achieved its second phase in the Modeling Adversarial Activity program, funded by the Defense Advanced Research Project Agency. CANON is a set of software tools that can “do the math” for intelligence analysts looking for activity directed by adversaries. Using integrated information from networks of networks, CANON analyzes and flags questionable adversarial activity.
HRL Laboratories, LLC, researchers have published results showing that targeted transcranial electrical stimulation during slow-wave sleep can improve metamemories of specific episodes by 20% after only one viewing of the episode, compared to controls. The same technology may offer a non-invasive treatment to mitigate bad memories that might cause post-traumatic stress disorder (PTSD). Metamemory describes the sensitivity of whether memories are recalled accurately or not, such as during eyewitness testimony.
HRL Laboratories, LLC, is completing development of wafer-scale infrared focal plane arrays that will dramatically reduce the size and cost of infrared or IR cameras. HRL was selected to carry on Phase III of the Defense Advanced Research Project Agency’s program Wafer-scale Infrared Detectors or WIRED.
HRL Laboratories tests its Expressive Assurance Case Toolkit (ExACT) in an autonomous M-RZR vehicle as part of the Assured Autonomy program sponsored by the Defense Advanced Research Project Agency (DARPA). The system can analyze AI-based systems to find or prevent safety failures, computing the circumstances that could avoid bad outcomes.
HRL Laboratories has published test results showing shock-absorbing pads made from HRL’s microlattice material had up to 27% higher energy absorption efficiency than the current best-performing expanded polystyrene foam when sustaining a single impact and up to 35% higher energy absorption efficiency than state-of-the-art vinyl nitrile foam when impacted repeatedly. Microlattice could replace current foams in protective packaging, shock isolators for electronics, vehicle interiors, and helmet padding from football to bicycle helmets.
Dr. Paul G. Kaminski, Chairman of the Board of Directors of HRL Laboratories, LLC, has been selected as a 2020 inductee into the National Aviation Hall of Fame. An aeronautical engineer, Kaminski oversaw development, production, and deployment of major stealth aircraft for the United States Air Force.
HRL’s patented adjustable negative stiffness system enables vibration control for land or sea vehicles without bulky seats. The system protects passengers from injury due to rough roads or water conditions at a tenth of the power usage of state of the art shock absorbing systems.